Exploring Convolution Neural Network for Branch Prediction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring Deep Neural Networks for Branch Prediction

Recently, there have been significant advances in deep neural networks (DNNs) and they have shown superior performance in audio and image processing. In this paper, we explore DNNs to push the limit for branch prediction. We treat branch prediction as a classification problem and explore both deep convolutional neural networks (CNNs) and deep belief networks (DBNs) for branch prediction. We ana...

متن کامل

Exploring Dynamic Branch Prediction Methods

How to resolve the control flow breaking caused by the branch instructions is a major issue in modern deep pipeline processor design. Our project is based on the paper of J. Stark et. al. [1], a variable length path branch predictor. It uses the branch path information for prediction, and change the length of the path dynamically based on the profiling of the application. It shows that a “cleve...

متن کامل

Neural Branch Prediction

The new neural predictor improves accuracy by combining path and pattern history to overcome limitation inherent to previous predictors. It uses a different prediction algorithm that would allow parallel execution of instructions during every prediction, thereby keeping the latency low. In fact, the fast path-based neural predictor has a latency comparable to the predictors from industrial desi...

متن کامل

Dual-Branch Deep Convolution Neural Network for Polarimetric SAR Image Classification

The deep convolution neural network (CNN), which has prominent advantages in feature learning, can learn and extract features from data automatically. Existing polarimetric synthetic aperture radar (PolSAR) image classification methods based on the CNN only consider the polarization information of the image, instead of incorporating the image’s spatial information. In this paper, a novel method...

متن کامل

Learning Traffic as Images: A Deep Convolution Neural Network for Large-scale Transportation Network Speed Prediction

This paper proposes a convolution neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with high accuracy. Spatiotemporal traffic dynamics is converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. CNN is applied to the image following two consecutive steps: abstract traf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.3017196